Sydney Water Trial Project Using Low Voltage Conductivity to Assess Sewer Pipe Water Tightness

Chuck Hansen¹, Michael Condran, PE², Toby Bourke³

- ¹ Chairman & Founder, Electro Scan Inc., Managing Director, Electro Scan Australia Pty Ltd., and Managing Director, Hansen Analytics LLC, Sacramento, California, USA, chuck.hansen@hansen.com
- ² Vice President, Electro Scan Inc., Tampa, Florida, USA, michael.condran@electroscan.com
- ³ Vice President, Innovyze Asia Pacific, Sydney, New South Wales, Australia, toby.borke@innovyze.com

EXECUTIVE SUMMARY

Worldwide water utilities and smart cities are adopting new technologies to replace legacy technologies that have been the mainstay to assess existing pipe conditions and accept new installations as watertight.

The importance of correctly assessing the water tightness of sanitary sewer pipes cannot be understated. Capital expenditure decisions rely on correct assessments to identify repair, rehabilitation, and replacement decisions; new installations rely on a minimum amount of water leakage to achieve design flows and useful life assumptions; and rehabilitation effectiveness is measured and reported to regulatory bodies for environmental compliance, stewardship, resiliency, and sustainability of water quality.

Yet, changes from longstanding practices often requires new methods, techniques, and standards, including higher performing pipe materials.

The purpose of this trial project was to facilitate a field trial of technology introduced nearly ten years ago that has been gaining momentum & acceptance.

Representing a potential disruptive technology, six (6) project locations were selected throughout the Sydney Water service area, representing different pipe materials, pipe diameters, and new & existing pipe installations. Once limited to visual inspection using high resolution digital closed-circuit television (CCTV) cameras, sonar, laser, and acoustic sensors to listen for leaks, this project trial tested the field application of electric current, capable of assessing full-length 360-degree pipe walls to automatically

Figure 1. Selected field investigation locations for Electro Scan trial.

locate and estimate leaks in liters per second (l/s).

Referred to by the U.S. Environmental Protection Agency (USEPA) as focused electrode leak location (FELL)¹ the method demonstrated significant competitive advantages compared to legacy CCTV, especially in the assessment of trenchless pipe materials, including Cured-in-Place Pipe (CIPP) and Spiral Wound Pipe (SRP) with Rib-Loc fittings.

This white paper includes a detail review of existing assessment techniques, project findings, technology overview, and field results fom each project area included as part of Sydney Water's trial project evaluation of FELL technology.

SYDNEY WATER BUSINESS CASE

A Business Case was developed in October 2019 by Sydney Water's Urban Design and Engineering team to justify the evaluation Electro Scan's patented protected low voltage conductivity technology.

The Sydney Water Business Case established that the purpose of its evaluation was to test and document the practical application, field operation, ease of reporting, and data production, utilising ASTM F2550-13 (2018), compared to traditional Closed-Circuit Television (CCTV) inspection utilising WSA 05—2008 2.2 Conduit Inspection Reporting Code of Australia standards.

Key questions, included the following:

- 1. Does FELL technology deliver repeatable leak location and severity measurements not provided by traditional CCTV visual inspection?
- 2. Can FELL technology be used to more accurately locate infiltration and exfiltration?
- 3. What are FELL advantages & disadvantages?
- 4. How should new (possible) quality standards be introduced during start-up & operation of Sydney Water's Regional Delivery Consortium (RDC)? *NOTE: This issue is outside the scope of this white paper.*

Key Findings from Electro Scan Trial Project

The Electro Scan pilot project demonstrated significant drawbacks to Sydney Water's present standards for testing existing sewer mains for water tightness, and more importantly, acceptance of repairs, rehabilitation, and replacements.

Six (6) locations were selected to provide a targeted mix of new and existing pipe materials.

1. **Potts Hill**. A test pipe observed that FELL technology successfully detected both pre-arranged defects, as did CCTV inspection; however, FELL technology additionally identified & measured numerous other defects at material changes transitioning from clay pipeto-plastic pipe, and defects at each joint.

2. <u>Abbotsford</u>. Target of a recent sanitary sewer overflow into a customer's home, Electro Scan found several defects, not found by CCTV, in addition to defects in a recently lined sewer, that was abandoned by CCTV after successfully tested by FELL.

3. **<u>Balgowlah Heights</u>**. FELL found numerous defects not found by CCTV representing significant sources for infiltration and exfiltration, including defective junctions that CCTV observed in good workmanship.

4. **<u>Birchgrove</u>**. Prone to persistent tidal and wet weather infiltration (despite recent and significant rehabilitation), FELL found severe defects in recently lined cast iron pipes. One pipe where CCTV was attempted, but abandoned due to a significant bulge in Cured-In-Place Pipe (CIPP) liner, was successfully surveyed by FELL.

5. <u>Chatswood</u>. Numerous sources of potential exfiltration were identified in close proximity to a local stormwater channel, not seen by CCTV, including defects in a Spiral Wrap Pipe.

6. **Spring Farm**. A new Unplastised Plastic Pipe (uPVC) was evaluated by FELL. Already having undergone vacuum air testing by its prime contractor, Electro Scan noted several leak locations that may be a possible change of materials.

Sewer Main Service Lateral Connection

Figure 2. SwO1 Analysis						
STRENGTHS	WEAKNESSES					
 Technology represents a machine-based repeatable testing apparatus for pipe water tightness across a majority of pipe materials, except for unprotected or unlined cast iron pipe. Locational accuracy of 1cm (0.4in) appears to be confirmed by comparison to joints & junctions from CCTV. Similar operating features to traditional CCTV inspection, having significantly more precise analytics & matrices 	 Technology is not currently used by any other utility in Australia or New Zealand. Technology does not locate clock position of each defect. 					
OPPORTUNITIES	THREATS					
 First utility could lead the Asia Pacific market in updating pipeline acceptance standards for contractors, suppliers, and professional engineering firms. 	 Technology could materially change the definition of 'delivering quality assets' as previously published, altering pipe materials and/or installation practices (e.g. steam- 					
 Introduces 'same day' post-construction quality measurement. 	cured lining showing higher incidences of leakage may be replaced with UV or LED-based curing methods.)					

Figure 2. SWOT Analysis

LEGACY METHODS & ADVANCED PIPE MATERIALS PROVE DIFFICULT TO TEST

The selection and proritisation of existing infrastructure to repair, rehabilitate, and replace, is a complicated, time consulting, and expensive task. Despite advancements being made in the use of desktop computer models using *age-based* algorithms, including pipe material, soil types, diameter, and flow dynamics, *condition-based* models using actual physical inspection techniques have often driven capital expenditure programs.

Given the importance of water to the Australian economy, combined with market-efficient behavior, it stands to reason that repairs and renewal of water infrastructure would be straightforward. Yet, basic technologies for seeing defects (e.g. CCTV cameras, smoke & dye testing, etc.) and listening devices to hear leaks (e.g. acoustic sensors, data correlators, hydraphones, etc.) have been inconsistent and incomplete in their total assessment of pipe segments.

The absence of significant industry technical innovations has prevented improvement in pipeline condition assessments. Slow adoption of new technologies by water utilities, aversion to technical innovations, and entrenched supplier networks have contributed to the slow introduction of unbiased and unambiguous leak detection technologies, risking poor allocation of capital for finding & fixing water & sewer infrastructure and inadvertently accepting sub-standard rehabilitated and newly installed pipes.

For pressurised water distribution networks and sewer force mains, acoustic sensors have historically dominated the leak detection market. Almost universally accepted, experts agree that listening for leaks has long been hampered by a variety of environmental, scientific, operational, and other external influences, as shown in Table 1, that often prevents dependable, repeatable, and quantifiable readings. While acoustic leak detection equipment was considered to be satisfactory by most professionals, adoption of more sophisticated composite pipe materials offering lower installation costs, anti-corrosion, and

Table 1. Drawbacks of Using Traditional Acoustic Sensors, Data Loggers, and Correlators.

- Ambient noise interference.
- Variable water table heights affect results.
- Unable to assess innovative pipe materials, especially PE, PVC, & HDPE pipes.
- · Different results for different pipe diameters.
- Leak size is difficult or unable to be determined.
- Multiple false-positive readings.
- Repair clamps on previous leaks will be bypassed by acoustic waves.
- Inability to quantify defect flow rates in GPM.
- Customer's continuous water use similar as a leak.
- Affected by changes in backfill materials.
- Lengthy data processing & reporting times.
- Lack of repeatability, by crew, by equipment.
- Special training required for field crews.
- Need for third-party data interpretation.
- Misses silent or undetected leaks.

durability features, rendered traditional acoustic sensors, data loggers, and correlators obsolete or lacking in their ability to detect leaks or anomalies. Unable to detect leaks in certain pipe materials using acoustic sensors, secondary technologies were attempted to anticipate catastrophic failures.

Leaks that were normally detected using acoustic equipment became more challenged in plastic, lined, coated, and specialty-composite piping materials.

Continuing its growth and adoption by the world's leading water utilities, the challenges of bringing a new technology to market actually created a major strategic advantage by re-doubling its efforts to assess the widest range of pipe diameters, materials, field conditions, flow velocities, and more.

Figure36. Testing of a Cured-In-Place Pipe (CIPP) sample finds defects missed by visual inspection.

PIPE FAILURES QUESTION LEGACY ASSESSMENT TECHNIQUES

Lessons learned are essential to promote overall improved problem solving to support critical infrastructure management considerations. But, while water utilities frequently share success stories at conferences and seminars, problems that may reflect poorly on organizations, consultin engineeer, or suppliers, typically are shared less often.

In 2010, the renowned civil engineer & educator, Ken Kerri, Ph.D., P.E., with the Office of Water at California State University sought ways to improve pipeline water tightness evaluations after working with real-world challenges faced by his former students. Surprisingly, newly renovated pipe that used long-accepted trenchless construction practices begun in the 1970s were already showing deficiencies. Using traditional eye-droppers with coloured dye to test sample CIPP coupons for leaks, as shown in Figure 6 below, more accurate testing using low voltage electrical current was favored, if able to be deployed in the field for testing full-length 360-degree liners.

Now exceeding \$5 billion in annual sales in the United States, Cured-In-Place Pipe (CIPP) lining has gained widespread acceptance as an alternative to traditional dig & replace methods of pipe replacement. First developed in 1971 in England, the CIPP process relines the interior of an existing pipe using heated water, steam, ultra-violet, or light-emitting diodes, to create or cure a new pipe wall inside the original host pipe, within hours.

Principally guided by the ASTM standard number F1216-16, Standard Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and *Curing of a Resin-Impregnated Tube*, installation is recommended to be inspected visually if appropriate, or by CCTV if direct visual inspection cannot be accomplished.

Table 2. CIPP Liner Defects Commonly Found After Installation

- Accelerant Burns
- Accidental Cuts
- **Bad Service Reconnections**
- **Bad Lateral Liners**
- Blisters
- Delamination
- Defective Epoxy
- Equipment Damage
- Foreign Objects
- Lateral Connection Rehabilitation (LCR)
- Lowered Resin to Felt Ratios
- Mainline to House Lateral Connection (MTH)
- Pinholes
- Poor, Incomplete, or Uneven Curing
- Overcooking
- Stretching Top-Hat Defects
- Wet-Out Failures
- Wrinkles, including Buckling, Fins, Folds, Lifts, & Ridges

Specifically, ASTM F1216-16 states the following:

8.7 Inspection and Acceptance. The installation may be inspected visually if appropriate, or by closed-circuit television if visual inspection cannot be accomplished. Variations from true line and grade may be inherent because of the conditions of the original piping. No infiltration of groundwater should be observed. All service entrances should be accounted for and be unobstructed.

Unfortunately, without mention of leak detection or water tightness, popular CIPP linings products merely have to show that no visible signs of "infiltration" are evident in the post-CCTV inspection and show that "all service entrances [should] be accounted for and be unobstructed."

Since most of the CCTV inspection is done by the same contractor completing the CIPP installation, reliable defect coding to protect the Owners' interest can often be problematic, especailly given the variety of post-CIPP installation defects that can occur, and as listed in Figure 6, belows.

RISK OF INCORRECTLY ALLOCATING CAPEX & APPROVING PIPES WITH MAJOR LEAKS

According to ASTM Subcommittee F36.20 on Inspection and Renewal of Water and Wastewater Infrastructure, every dollar misallocated for pipeline capital expenditures requires five dollars to correct the mistake. The opportunity cost of lost benefits from correctly designating the right pipes to fix includes the original cost of repairs, inconvenience to residential and business customers, and financing cost of capital, and the potential damage to collateral underground utilities.

As shown in Figure 7, a recent U.S. customers found different rehabilitation selections from two different inspection techniques. Additional testing was required after rehabilitation in the originally proposed area, showed no meaningful reduction in infiltration, after the relining of both sewer mains and service laterals.

Figure 4. U.S. Infiltration Assessment Project Comparing Manual CCTV Inspection vs. Machine FELL Inspection

Table 2. Comparison of CCTV and FELL Features and Capabilties

Co Le	omparison of CCTV & FELL for eak Identification & Quantification	CCTV	FELL
1	Automatically Finds Potential Sources of Infiltration	NO	YES
2	Automatically Finds Leaks Inside Joints	NO	YES
3	Automatically Finds Leaks at Service Connections	NO	YES
4	Automatically Finds Sources of Infiltration at Cracks	NO	YES
5	Automatically Finds Leak Locations (within 3/8 th in or 1 cm)	NO	YES
6	Automatically Measures Size of Leaks (Estimated in GPM)	NO	YES
7	Automatically Finds Defects That Leak from Bad Couplings	NO	YES
8	Automatically Finds Defects That May Still Leak After Repairs	NO	YES
9	Automatically Finds Defects That Leak in CIPP Lining Projects	NO	YES
10	Automatically Finds Defects After CIPP Service Re-Connections	NO	YES
11	Automatically Finds Leaks, If Silt or Debris on Bottom of Pipe	NO	YES
12	Able to Conduct Inspections, If Sewer Pipe Is Full of Water	NO	YES
13	Able to Determine Size of Potential Leak, If Roots Are Present	NO	YES
14	Automatically Finds Leaks at Joints, If Grease Is Present	NO	YES
15	Able to Determine Size of Leaks, If Pipe Has Encrustation	NO	YES
1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16	Requires Active Infiltration to Identify Defect at Source	YES	NO
17	Contains Moving Parts That Could Clog from Debris or Silt	YES	NO
18	Requires Bypass During Inspection, If Pipe Full	YES	NO
19	Requires Special Training and Certification to Identify Defects	YES	NO
20	Relies on Visual Observations to Record Defects	YES	NO
21	Ave. Speed of Inspection (6-30" Sewer Main Diameters)	3ft/min	50ft/min

Figure 5. Avoidance/Adoption Matrix

1880s 1965 1980s 1850s 1920s 1930s 1950s 1978 1990s 2001 2002 2003 2006 2017 Helical Vane Meters **Television Cameras** Penetrating & Correlator **Combined Acoustic** Waste Measuring) Electrode Advanced Ground Manual Sounding Digital Correlator Acoustic Loggers lectronic Step Meter Closed-Circuit eak Location Microphones **Fester DMAs Microphones** Step Testing eak Noice Correlator Focsued Deacon Ground Satellite Ground ogger Radar

Figure 6. Chronology of Condition Assessment Coding Standards for Pipe Leaks

Source: American Water Works Association, 2019

BACKGROUND

Infiltration into new and recently repaired gravity sewers continues to be a major challenge. While air and hydrostatic testing has been a traditional acceptance test for newly installed pipes, high groundwater conditions and the presence of service connections and junctions make testing problematic.

While alternative visual inspection using high resolution Closed-Circuit Television (CCTV) cameras are unable to 'see' inside of cracks or joints to determine watertightness, a new approach has emerged to test gravity sewers that promises to accurately locate and quantify defects. Referred to as Electro Scanning has been adopted by UK-based WRc plc and German-based IKT, warrants further review and benchmark review by Sydney Water, comparing new technology to existing test methodologies.

Ground water infiltration, and in some cases tidal infiltration, of hydraulically-challenged gravity sewers is recognised as a considerable problem for Sydney Water and its customers.

The need for infiltration (and exfiltration) reduction in new & existing sewers are numerous, including:

- Reduced Combined Sewer Overflows (CSO) and spills;
- Improved quality control of contractor work and possible warranty claims;
- Împroved diagnostics of customer complaints and sources of sewage backups and floodin;
- Reduced treatment costs at the sewage works;
- Reduced power consumption when pumping forward to treatment;
- Improved environmental compliance standards and mandated reporting;
- Avoidance of fines or actions by New South Wales EPA;

Traditional pipe inspection and techniques for condition assessment have been problematic, often falling short of accurately certifying new and existing pipes as watertight and correctly prioritising pipes for repair, rehabilitation, replacement.

Given the growing adoption of low voltage conduc-

tivity, also referred to as Focused Electrode Leak Location (FELL), as a new way to accurately and consistently test full-length non-conductive (i.e. non-metallic) pipes, for water tightness, a business case was pursued to conduct a field trial of the technology in partnership with U.S.-based Electro Scan Inc. and its Australian subsidiary Electro Scan Australia Pty Ltd.

Figure 7. Air and Water Testing for Leak

AIR TESTING

- No Correlation Between Air Testing & Water Leakage.
- Not Necessarily a 'NON-DESTRUCTIVE TEST'
- Industry's Test Standard is Too Lenient.
- PASS | FAIL ONLY. Not Able to Find Multiple Leaks.

WATER TESTING — Hydrostatic

- Water Testing Expensive & Time Consuming.
- Not Necessarily a 'NON-DESTRUCTIVE TEST'
- Industry's Test Standard (Again) Too Lenient.
- PASS | FAIL ONLY. Not Able to Find Multiple Leaks.

Working as a subcontractor to a Sydney Water approved contractor, Aqua Assets Pty Ltd., six (6) locations were selected, as shown in Figure 1, to conduct detail field investigations, including comparison with Sydney Water approved Closed-Circuit Television (CCTV) inspection, in accordance with current WSAA standards.

Subsequent to required Sydney Water induction and White Card certification, field work was undertaken from 6 December to 13 December 2019, with findings discussed in this report. Figure 8. Example Air Testing Devices Used for Leak Testing of Joints and Junctions.

CCTV CAN'T RECORD WHAT CAN'T BE SEEN Visual inspection has been a longstanding way to examine the internal condition of sewer and stormwater pipes. Original CCTV defect classification standards, first developed by British-based Water Research Cen-

Figure 8. Air and Water Testing for Leak

tre (WRc) and Transport and Road Research Laboratory (TRRL), underwent successive revisions and refinements, with independent tranches emerging for different countries, and in some cases, utility-specific versions and equipment as shown in Figure 4.

Yet, even as new defect classifications and grading methods were developed, basic drawbacks and deficiencies of visual detection remained, as shown in Figure 5 below. Since CCTV cameras are unable to tell the difference between superficial cracks and cracks that leak, or see inside a joint's bell & spigot to spot leaks, CCTV has often led to incorrect prior-itization of rehabilitation.

More importantly, as seen through benchmarking studies by EPA, CCTV has fallen short as a dependable tool to test or certify CIPP for water tightness, unable to locate or quantify the severity of pinholes or confirm permeable surfaces, prior to acceptance.

Traditionally, CCTV operators have inspected underground pipes before and after rehabilitation, with installation contractors being allowed to check their work utilizing a self-administered visual coding system developed and adopted by CCTV manufacturers and contractors.

As traditional visual and listening devices have proven limited in certifying pipes as watertight, coupled with changes in advanced pipe materials and rising utility rates to finance needed repairs and capital plans, utilities have been open to new technologies that promise the ability to more accurately and dependably support complex infrastructure decision support.

Figure 9. Drawbacks of Closed-Circuit Television (CCTV) Inspection

Source: WRc Electro Scan MasterClass, Peterborough, England, 2017

THE SCIENCE OF LOW VOLTAGE CONDUCTIVITY TESTING

After a number of CIPP liner failures, during and directly after its warranty period, technical solutions were sought to create an accurate, cost-effective, and repeatable way to reliably certify the water tightness of pipelines. Complicating matters were the seemingly endless combinations of pipe materials, diameters, shapes, depths, lengths, gradients, soil types, and age profiles.

The science of using low voltage conductivity is straightforward. A similar application known as holiday testing, was already in use to evaluate protective coatings for exposed pipes, rooftops, and reservoir linings. The technology need was for a low voltage equivalent to internally assess full-length, 360-degree pipe wall integrity while allowing existing flow conditions during inspection.

Most sewer pipe materials such as brick, clay, plastic, concrete, and resin-based liners, are poor conductors of electrical current. As a result, if a defect exists in the wall of a pipe, then leakage of electrical current will indicate the location and size of the defect. The measured intensity and duration of the electrical signal emanating from the pipe can be correlated to a flow rate in Gallons per Minute (GPM), whether or not water infiltration or exfiltration actually occurs during the survey, without bypass required.

An approach was developed by establishing a low, 12-volt electrical circuit with a 40 milliamp (mA) signal, using water as a conductor, which allowed two ends of the circuit to connect and close the loop, as depicted in Figure 3. Applied to an underground pipe, one side of the circuit would remain inside a non-conductive pipe (e.g., asbestos cement, brick, epoxy-coated ductile iron, high density polyethylene, plastic, resin-based liner, vitrified clay pipe, etc.). Connected to a grounding stake, any defect current would need to travel to the surface to confirm a corresponding pipe wall defect, or leak.

If the loop is never closed, whereby an electrical circuit is closed, the pipe would be shown to have no defects. Conversely, if the loop is closed, whereby an electrical connection is made, then an opening or defect exists in the pipe wall, allowing a pathway from inside of the pipe to ground. Since water leakage and electric current are highly correlated, the intensity and duration of measured current can provide a specific defect size and corresponding flow rate in gallons per minute.

Utilizing desktop pipe simulation tools that could reliably model variable impedance of the electric circuit would be the first step. Confirming probe diFigure 10. Low Voltage Conductivity Scientific Principle

Source: ASTM F2550 (2006, 2013, and 2018).

mensions, power settings, grounding sources, data capture, repeatability of results, and precision of leak location would offer precise locational accuracy. Important also to defect location is quantifying a leakage rate. Basic assumptions related to hydraulic head conditions on a defect and surrounding pipe burial soil conditions were made to develop a calculation for a relative leakage rate that is not made by other existing leak location products.

Following the principle operation of AC circuits, a grounding source was needed to simulate a conductive rod driven into the earth near the operation of the device to complete its circuit. The frequency of signal sources provided direction with regards to the system physics. In other words, modelling and thinking of electric fields, current and charge sources were done under the assumption of steady state or "static" conditions. Analyzing electric fields and current densities were performed under several static conditions including, but not limited to, pipe size, pipe material, defect size, voltage levels, and defect location along the pipe, relative to the probe.

As illustrated in Figure 9 (Below) electrostatic operational properties and parameters were modeled, analyzed, and plotted using COMSOL® Multiphysics® and MATLAB, a multi-paradigm numerical

Figure 11. COMSOL® Multiphysics® depiction of Electro Scan's narrowly focused electric beam able to assess 360° of pipe wall traveling at a speed of 15-20m per minute.

computing environment and proprietary programming language developed by MathWorks. Summing static condition values over different parameter sweeps enabled accurate generation of results.

While COMSOL® has multiple choices on meshing approaches, it was found that more coarse mesh reduced simulation time and memory resources, while a user-defined mesh could affect data accuracy. To verify results, different meshed geometries were needed during testing, noting that a normal mesh created a more accurate response, as shown in Figure 4.

FELL technology developed by Electro Scan Inc. was evaluated using COMSOL® tools. As shown in Figure 5, COMSOL® simulation results and data, along with the 3D image processing of Electro Scan data and verification plots, confirmed consistently repeatable leak location results to within three-eighths (3/8th) of an inch, or one (1) centimeter (cm), accuracy across all non-conductive (i.e., non-metallic) pipes. These results are an industry breakthrough for leak location.

MEASURING LEAKS IN LITERS PER SECOND

When generating a high frequency electrode signal, one important aspect of the AC signal is that current levels of the defect electrode can be measured, demonstrating the breakthrough use of low voltage conductivity to locate leaks.

When the probe approaches a pipe defect as illustrated in Figure 10 (Below), AC current levels on the electrodes increase with spatial dependence inside a pipe, comprising the most important conduction characteristics that make the device perform, as shown in Figure 6. In other words, pipe defects are identified by the probe measured current levels. The measured area beneath the current spike curve can be used to compute the flow rate of the defect. Flow rates can be provided in any customary unit of measure, such as liters per second.

Figure 13. Sydney Water Field Equipment Set-Up

Figure 12. Low Voltage Conductivity Scientific Principle

Metrics for each defect, including:

- Starting Point, Ending Point, and Maximum Defect Current.
- Defect Classification as Large, Medium, or Small.
- Flow Classification as Sever, Moderate, or Minor Defect Readings.
- Total Estimated Defect Flow in units of volume over time.
- Total Pipe Segment Defect Flow in units of volume over time, by pipe diameter & length.

One of the benefits of utilizing COMSOL® Multiphysics® was the ability to model, test, and confirm single and multiple pipe defects, in minutes across multiple pipe materials. While COMSOL® easily accommodates multiple pipe materials, internal pipe pressures, gradients, and water conductivity, desktop results needed to be field validated to account for environmental constraints and demands of working in residential, commercial, and open areas as set-up in Figure 11 above.

Electro Scan Probe

Sliding Funnel Plug

ELECTRO SCAN FIELD OPERTIONS

FELL technology involves passing a tethered probe through a customer's pipe network, connected to a deployment support vehicle by a cable around 1000m in length. The probe emits a 40-milliamp current into the water, producing a one kilohertz signal distinct from that emitted by anything else in the ground, eliminating false positives.

To summarize the use of low voltage conductivity and its application to field testing of pipes, key elements include:

- (a) If a crack or break occurs in a pipe wall, a tethered probe emitting electric current will complete the circuit above ground to map the precise location and severity of each leak in both gravity & pressurized pipes,
- (b) That the technology could be easily retrofit to a standard TV truck or van,
- (c) That FELL had the capability of measuring leaking joints missed by CCTV cameras that cannot see into bell & spigots, and
- (d) That FELL was able to test full-length 360-degree surfaces for plastic pipes, including high density polyethylene, plastic, cured-in-place pipe, and spiral wound pipe for water permeability, leaks, and pinholes. Pipe materials are listed in Table 3 with setup illustrated in Figures 12 and 13.

Figure 14. Field Set-Up By Pipe Dynamic

1. Retrieving jet hose, typically at upstream manhole. Not needed for cleaning, but let's us know the pipe is somewhat unobstructed and will pull our probe.

2. Removing the jet hose nozzle from and screw on a right-sized funnel cone. Attached to the jet hose, this funnel cone will temporarily hold back water to surround the Electro Scan probe during survey.

NOTE

Sydney Water Field Photos of Holly Tonner, Aqua Assets & Matt Campos, Electro Scan at work.

Pre-Reh	abilitation Pipe Materials	Pipe Types
ABS	Acrylonitrile-Butadiene-Styrene Pipe	Gravity Sewers
ACP	Asbestos Cement Pipe	Rising (Force) Mains
BRK	Brick Pipe	Pressurised Water Mains
CON	Concrete Pipe	Private Sewer Laterals
DIP	Ductile Iron, with coating	Service Laterals
ORP	Orangeburg Pipe	Stormwater
PCCP	Pre-stressed Concrete Cylinder Pipe	Open Channels
PFP	Pitch Fiber Pipe	Home Plumbing Pipes
PVC	Polyvinyl Chloride Pipe	Large Diameter
RCP	Reinforced Concrete Pipe	Sewer Interceptros
VCP	Vitrified Clav Pipe	Manhole Chambers
Post-Rel	habilitation Pipe Materials	Pipe Shape
CMLSP	Cement Mortar Lined Steel Pipe	Box
CIPP	Cured-In-Place Pipe	Circular
FF	Fold & Form	Oval
FRP	Fiberglass Reinforced Pipe	Trapezoidal
FRPM GRP GROUT HDPE PE RTR SIPP SPR	Fiberglass Reinforced Polymer Mortar Glass Reinforced Pipe Grouted Joints and Laterals High Density Polyethylene Pipe Polyethylene Pipe Reinforced Thermosetting Resin Pipe Spray-in-Place Pipe Spiral Wound Pipe	Pipe Diameter & Length Smallest 76mm (3 inches) Largest 2000mm (70 inches) Up to 300m (1,000 feet)
Cost	Similar to CCTV Cost, but production	on rate up to 1km /day.

Figure 15. Field Set-Up By Pipe Dynamic

that allows electric current to test fulllength, 360-degree of pipe wall during truck, mechanical pulley, or manually

What Equipment Was Used in Sydney Water Electro Scan Trial?

The Electro Scan system's adaptive design allows for quick, simple transitions between CCTV and Electro Scan configurations. The Electro Scan probe connects to the reel with the same type of plug the CCTV camera uses. A switchover box allows for data switching to either the CCTV Terminal or the Electro Scan Controller, and then to the Computer for viewing and storage.

Figure 16. Field Set-Up Configuration for Sydney Water Electro Scan Trial

Sydney Water Electro Scan Trial Results

Electro Scan surveyed a total Figure 17. Number of Defects By Severity of 1,304 meters (4,278 feet) including 691m or 54% of Vitrified Clay Pipe, 431m or 33% of Cured-In-Place Pipe (CIPP), and 169m or 13% of Plastic pipe.

While clay pipe materials had a disproportionate number of Large, Medium, and Small Defects, CIPP showed an excessive number of total defects, primarily due to pinhole leaks, with only 2 of 22 pipes plastic.

While leakage in CIPP liners was large relative to all pipe materials tested, Sydney Water's CIPP performance is similar to line results worldwide.

Electro Scan found 1,421 Total Defects in 24 sewer mains, representing 116,409 liters per second of defect flow, with one sewer main repeated twice at Potts Hill for testing purposes.

Scans 24	Dista 1,30	ice 1	Pinhole 334	Smal 488	1	Med 24	9	Large 350	Total Defec	ets 116	.409	LPD 10,057,731
					-							
Date 🖻 Mainli	ne ID 📲	Pipe ID	Pipe T	ype 📱 🛛 Diam	eter			1			_	
10/12/2019 12924	81 - 1290317	3595216		EW 15	-	77	0	3	10	115	34.169	2,952
10/12/2019 12897	45 - 1292481	10626500	ł	EW 15	i0	52	0	3	10	66	16.836	1,454,59
12/12/2019 13554	65 - 1355233	1355465 -	1355233 V	'CP 15	i0	80	0	61	47	32	13.397	1,157,463
12/12/2019 12930	66 - 1293370	3599630	v	/CP 30	10	97	0	37	62	59	11.932	1,030,946
10/12/2019 12963	62 - 1293630	3597702	v	CP 15		29	0	6	10	34	7.544	651,775
13/12/2019 12832	07 - 1285939	3822108	V	CP 22	.5	68	0	80	23	6	6.088	526,021
13/12/2019 12859	47 - 1283215	3576181	c	IPP 22	:5	49	114	55	11	9	5.790	500,237
10/12/2019 12963	50 - 1293630	3597698	v	CP 30	10	85	0	95	41	2	5.035	435,098
13/12/2019 12856	23 - 1285939	3575745	v	CP 22	15	30	0	36	12	3	2.937	253,744
13/12/2019 12859	39 - 1283211	3578905	v	CP 22	5	15	0	13	9	7	2.593	223,981
13/12/2019 12832	11 - 1283215	3576177	v	CP 22	5	38	0	21	4	6	2.189	189,095
09/12/2019 12936	34 - 1296354	4300122	۷	CP 40	10	31	0	14	2	6	1.996	172,469
10/12/2019 12911	89 - 1288457	3591661	с	IPP 22	5	64	11	7	0	1	1.451	125,318
10/12/2019 12880	41 - 1290769	3591084	c	IPP 22	5	64	40	3	1	1	1.103	95,338
09/12/2019 12963	8 - 1296638	4300426	v	CP 40	10	74	0	35	1	1	0.967	83,564
06/12/2019 A2 - B	2	A2 - B2	. V	CP 15	io 📑	15	0	7	3	1	0.916	79,094
06/12/2019 A - B		A - B	y	/CP 15	50	15	0	7	3	1	0.843	72,825
11/12/2019 MH11	- MH10	MH11 - MH	410 F	VC 22	25	68	13	2	0	0	0.140	12,156
10/12/2019 12903	25 - 1290341	3593196	c	IPP 20	00	57	65	0	0	0	0.102	8,831
09/12/2019 12963	54 - 1293630	3597706	s	RP 40	00 -	30	37	0	0	0	0.099	8,558
11/12/2019 MH8 -	MH7	MH8 - MH	7 F	VC 22	25	101	10	0	0	0	0.087	7,522
10/12/2019 12990	41 - 12911889	3593816	C	IPP 22	25	47	9	1	0	0	0.080	6,923
10/12/2019 12903	41 - 1290321	3590472	c	IPP 20	00	55	27	0	0	0	0.068	5,833
09/12/2019 12903	21 - 1288037	3590464	c	IPP 22	25	63	8	2	0	0	0.048	4,143
Potts I	Hill Rene	atahili	tv Testina			Distance (m)	Pinhole =	Small	Medium	Large	LPS	LPD

Figure	10	Guidmon	Watan	Trial	Duciant	C	Degulta	Dankadl	D T	140.00	Dow	Saaand
rigure	10.	Sydney	water		roiect	Survey	Results.	капкец	DVI	mers.	rer	Second

Page 12 of 38

The FELL Electro Scan trail project was limited in its scope and, therefore may not be representative of Sydney Water's total network, leak profile, age, pipe condition, or thoroughness of current inspection techniques or contractor performance; however, even the limited scope of work indicates several drawbacks with current condition assessment practices.

Sydney Water condition assessment, inspection, and certification standards are similar to other water utilities survey by Electro Scan Inc.

Electro Scan Inc., and its wholly-owned British, German, and Canadian subsidiaries have cumulative assessment of over 1,200 km (4 million feet) of pipes using its patented low voltage conductivity technology, with all results stored on its proprietary Amazon Web Services cloud-based CriticalSewers® cloud application developed and supported by California-based Hansen Analytics LLC.

While additional field testing is warranted to understand scope and significance of its finding, especially before any across-the-board implementation, imme-

```
Figure 20. Sydney Water Trial Project Survey Matrix
```

diate need appears necessary in support of Sydney Water's CIPP acceptance program and dry weather & wet weather infiltration assessment program.

As shown on the following page, twenty-four (24) sewer mains surveyed as part of its trial project included Clay, CIPP, and Plastic pipes, as follows:

Table 4. Number of Meters, Defects and Defect Flow in l/s

	Meters	Defects	l/s
Clay ¹	706	994	107.44
CIPP	429	402	8.74
PVC	169	25	0.23
Total	1,304	1,421	116.41

¹ Clay pipe includes earthenware and vitrified clay pipe.

It should be noted that while defects counts and l/s defect flows for clay pipe appears consistent with older pipes, but defects found in newly installed CIPP appears excessive.

Sydney Water Electro Scan Trial Results – By Pipe Material

Figure 19. Clay Pipe, Ranked By Liters Per Second

	Scans	Distance	Pinhole	Small	Me	dium	Large	Total Defe	cts	LPS	LPD
	14	706	0	418		237	339	994	1	107.441	9,282,873
	Date F Mainline ID	I Pipe ID	Pipe Type 🛛	Diameter							
1	10/12/2019 1292481 - 1290317	3595216	EW	150	77	0	3	10	11	5 34.	169 2,952,202
2	10/12/2019 1289745 - 1292481	10626500	EW	150	52	0	3	10	66	16.836	1,454,597
3	12/12/2019 1355465 - 1355233	1355465 - 1355	233 VCP	150	80	0	61	47	32	13.397	1,157,463
4	12/12/2019 1293066 - 1293370	3599630	VCP	300	97	0	37	62	59	11.932	1,030,946
5	10/12/2019 1296362 - 1293630	3597702	VCP	150	29	0	6	10	34	7.544	651,775
6	13/12/2019 1283207 - 1285939	3822108	VCP	225	68	0	80	23	6	6.088	526,021
7	10/12/2019 1296350 - 1293630	3597698	VCP	300	85	0	95	41	2	5.035	435,098
8	13/12/2019 1285623 - 1285939	3575745	VCP	225	30	0	36	12	3	2.937	253,744
9	13/12/2019 1285939 - 1283211	3578905	VCP	225	15	0	13 1	9	7	2.593	223,981
10	13/12/2019 1283211 - 1283215	3576177	VCP	225	38	0	21	4	6	2.189	189,095
11	09/12/2019 1293634 - 1296354	4300122	VCP	400	31	0	14	2	6	1.996	172,469
12	09/12/2019 129638 - 1296638	4300426	VCP	400	74	0	35	1	1	0.967	83,564
13	06/12/2019 A2 - B2	A2 - B2	VCP	150	15	0	7	3	1	0.916	79,094
14	06/12/2019 A - B	A - B	VCP	150	15	ļo	7	3	1	0.843	72,825
					Distance (m)	Pinhole	Small	Medium	Large	LPS	LPD

Figure 20. Cured-In-Place Pipe (CIPP), including 1 Spiral Wound Pipe, Ranked By Liters Per Second

	Scans	Di	stance	Pinhole	Small	N	ledium	Lar	ge Te	otal Defects	LPS	LPD
	8		429	311	68		12	11		402	8.741	755,180
	Date F Mainline ID	2	Pipe ID	Ріре Туре 💈	Diameter							
1	13/12/2019 1285947 - 12	83215	3576181	CIPP	225	49		114	55	11	9	5.790 500,237
2	10/12/2019 1291189 - 12	88457	3591661	CIPP	225	64	11	7	0	1	1.451	125,318
3	10/12/2019 1288041 - 12	90769	3591084	CIPP	225	64	40	3	1	1	1.103	95,338
4	10/12/2019 1290325 - 12	90341	3593196	CIPP	200	57	65	0	0	0	0.102	8,831
5	09/12/2019 1296354 - 12	93630	3597706	SRP	400	30	37	0	0	0	0.099	8,558
6	10/12/2019 1299041 - 12	91189	3593816	CIPP	225	47	9	1	0	0	0.080	6,923
7	10/12/2019 1290341 - 12	90321	3590472	CIPP	200	55	27	0	0	0	0.068	5,833
8	09/12/2019 1290321 - 12	88037	3590464	CIPP	225	63	8	2	0	0	0.048	4,143
						Distance (m)	Pinhole	Sr	nall Me	dium Lar	ge LPS	LPD

Figure 21. Plastic Pipe, Ranked By Liters Per Second

	Scans	Distance	Pinhole	Small	Me	lium	Large	Total Defects) - L	PS	LPD
	2	169	23	2		0	0	25	0	227	19,678
	Date F Mainline ID	1 Pipe ID	Pipe Type 🗄	Diameter				_			
1	11/12/2019 MH11 - MH10	MH11 - MH10	PVC	225	68	13	2	0	0	0.140	12,156
2	11/12/2019 MH8 - MH7	MH8 - MH7	PVC	225	101	10	0	o	0	0.087	7,522
					Distance (m)	Pinhole	Small	Medium	Large	LPS	LPD

Clay Pipe Assessment

While Sydney Water recommends other pipe materials that may be better suited for specific locations, clay pipe, including earthenware (EW), salt glazed ware (SGW),

Figure 22. FELL Inspection of Bell & Spigot Joints

Figure 24. Example CCTV Inspection of Cracks

and vitrified clay (VC) pipe, which represents the most significant percentage of sewer pipe material in the utility's service area, and not capable of adequately assessing leak profiles at cracks or joints.

Page 16 of 38

CURED-IN-PLACE PIPE (CIPP) TESTING BY IKT, WRc plc, & ELECTRO SCAN

Much work on the testing and inspection of CIPP liners has been spearheaded by the Institut für Unterirdische Infrastruktur (IKT), Gelsenkirchen, Germany. In 2016, IKT invited British-based Water Research Centre (WRc Plc) and American-based Electro Scan Inc. to participate on IKT's short-liner CIPP study.

Conducting field and laboroatory testing, including hydrostatic pressure testing and FELL testing utilising Electro Scan certified equipment, initial results were published in October 2019, with final results to be published upon approval by the German government.

A key finding of IKT's work was the consistent, repeatable test results of Electro Scan, which it had assessed as part of earlier version in 2001. While key readings demonstrated remarkable repeatability, IKT further recommended that additional software developments be undertaken to quantify pinholes leakage (less than 0.1 gallon per minute), as shown in Figures 26 & 27.

Figure 26. Repeatability Testing

Figure 27. New Release of Cloud-Based CIPP Leak Assessment Application

FELL-IKT Testing Figure 28. Results of 4th Annual International CIPP Survey

2019 – Electro Scan's 4th Annual International Survey of Cured-In-Place Pipe (CIPP)

Published in January 2020, Electro Scan Inc. publishhed results from CIPP testing for the 12-months end-ing 31 December, showing 86% of all CIPP lined pipes, including pipes as evaluated in Sydney Water, had deffects, with 44% of all surveyed pipes with an estimated 20 gallon per minute (1.2618 liters per second) leakage rate, representing 14,450 leaks, including 6,775 pinhole leaks for first time in its annual survey.

RECOMMENDED ACCEPTANCE GUIDELINES

Defects Unacceptable	NUMBER OF CIPP LEAKS
7 Defects Unaccentable	401-700 TOTAL COMBINED LEAKS
	Large Leaks
	Medium Leaks
" Mandatory Review if 3 or More Defects	Small Leaks
28	Pinhole Leaks
No More Than 7 Defects	Source: Hansen Analytics, LLC, Critical Sew
╵╻║╺╣╺╣┍	┘┐┌┤╷╷╷╷╴╎╷╷╷╷╷
······································	
	ուներ արդան անդերին արտագություններին աներաներ

Year Ending December 31st	2019	2018
CIPP Liners With Defect Flows	<mark>84</mark> %	78 %
CIPP Liners w/ZER0 Defect Flows	16%	22%

CIPP FELL INSPECTION In Linear Feet

Total Assessment Footage	111,607	98,255				

CIPP DEFECT FLOWS BY SEVERITY

More than 1 gal/min	71 %	68%
More than 2 gal/min	65%	62%
More than 3 gal/min	63%	60%
More than 4 gal/min	61%	56%
More than 5 gal/min	60%	54%
More than 10 gal/min	54%	46 %
More than 20 gal/min	<mark>44</mark> %	32%

UMBER OF CIPP LEAKS

Source: Hansen Analytics 110. Critical Sewers®	anuary 1 2020	
Pinhole Leaks	6,775	
Small Leaks	5,087	2,704
Medium Leaks	1,209	516
Large Leaks	1,379	744
TOTAL COMBINED LEAKS	14,450	3,964

1. POTTS HILL

Sydney Water's outdoor test facility on Lewis Street was the location for the first trial of Electro Scan's FELL technology. Working with authorised contractor NWSbased Aqua Assets Pty Ltd., Sydney Water training was completed with Induction Cards duly certified, prior to conducting work on Sydney Water premises.

A 16m length 150mm diameter test bed was installed to allow vendors to test their unpackaged equipment and allow other field personnel to receive 'hands-on' familiarity with equipment configurations.

Sydney Water's test bed represented a 10m Vitrified Clay Pipe (VCP) segment, followed by a 2m Polyvinyl Chloride (PVC) section, followed by a 4m VCP sectional.

Standard plastic joints were used to connect each VCP Open Ended Joint, while Ferncos fittings were used to secure each end of the PVC sectional pipe.

CCTV vs. FELL Results Comparison A key question of Sydney Water's Business Case was whether significant difference existed between visual identification of defects from the operation of a high resolution CCTV camera versus machine identification of defects from the operation of FELL equipment.

Other obvious comparisons include ease of use, survey time & speed, data genera-

Potts Hill, Lewis Street training facility.

Sydney Water trial test bed for pipe evaluations.

tion & storage, and repeatability. The *Temporary Filling of Water* Electro Scan FELL survey was completed first, including a second scan to demonstrate its data repeatability.

CCTV was conducted after FELL, with the seasoned, certified CCTV operator aware of the comparison and need to callout each defect.

CCTV recorded three (3) defect locations, locations. including (a) displaced joint at 2,71m, (b) longitudinal fracture @10.22m, and Two (2) of the 11 defects may have (c) circumferential fracture @ 11.16m, been influenced by a metallic flange with both defects at (b) and (c) placed in each of the ferno fittings, but sepby Sydney Water staff. Once fully set- aration of FELL results, indicates up with the camera positioned in the that 'no impact' was made on any pipe CCTV inspection took 13 minutes, other defects identified. 15 seconds to complete its inspection.

In contrast, FELL recorded eleven (11) probe positioned in the pipe, FELL defect locations, including leak locations took 4 minutes, 18 seconds to comat joints, defects at both changes in mate- plete its survey. rial, and both previously installed defects

LENGTH

As shown above in Figure 16 (Above), at longitudinal and circumferential

Once fully set-up with the FELL

Aces 20	Near	19						Surf (SQR PROVINCE AND ADDA	Ages Ass runners arr	HE (404 HE (50)4040 AL PHIL (0)	or to assert contav
				h	nspecti	on Rend	rt	torry red a	SHERE'S CO	CALCE!	n@ep.eninti
Dule		Asset owner	spand:	Au	el Ourier	Opera	er)	Section num	der:	Pipe	Asset Id.
6/12/20 Time of imp	editor.	2003 Clean	442 ingi	5Y08	Inder I	DALES	en.	6 Conduit Linit I	angih.	Mehod	ITEAT of Propertion
11.63.4	8			WIA	95-2006 2.2	Inside Pace	f the Wall			Televis	aon Comera
lown: Suburb: Revet Isset Location	POTTS LEWIS Privale	HILL STEND property, inc	lusicial sile	Catchere Annet Di Procipita Piere con	nt: Hon: BYS Bon: Dol	MEY WATER		US MH Burvey Dir: DS MH Imped Langht	-	akean m	
Aupose of Insp Ine of Conduit Type of Conduit Tear Layed	edion: 1 E 1 E 0	itructural Con invage inavity snews	dition Inspe	ection		Shape : Diathight Width: Pipe Material		Circular 152 mm PVC-Plasticised			
lamarka :											
1:120	Positi	01	Observat	tion							
)	0.00	Start.nod	e, nainte	nance hole, l	Noderame: A					
	\sim	0.00	Water lev	el, dear	fox (the inve	rt is visibie), de	e. 0%				
	~	0.50	Jointing #	naterial in to 12 o'd	tusion, redk lock	ution in cross s	rctional an	NK <5%, TAPE			
		***					umm , er	12 0 0000			
		9.56	Change o	of conduit	material. Ne	v material, PVC					
	\sim	0.22	Longitudi	nal fractu	ne , width 3m	m, at 9 oʻzlock					
	1	1.16	Circumfe	rential tra	cture , width	3mm , from 9 to	12 oʻblod				
	7	1.60	Change o	of conduit	material. Ne	w material, Vitri	led Clay				
Ċ)	5.09	Finish no	de, maint	enance hole	Nodename: B					
STR.N.M.	\$78,044	679.4	ean 5	79.104	519 pade	SERNOM	568,0	A SER.044	T.	CR.UM	SER pade
	144	14.	<u> </u>	182	5 ELECTROSCA	0 TRIAL_201200	2 r Page			*	

DEFEC	ст	CURR	IENT	Mairlin	ID A2-1	82 P)	pe ID: A2 -	82 Dia	neter: 150	Pipe T	iype VCI	 Boil Ty 	ps: Sand	ty Clay La	sam Gr	round Con	dillon Dry	Y .															
1000			=				-	_	_	_																					D	isplay Tot	I Current
1000					U	r .	5			1																				N	0		
The state							-																										Laige
ට් ₅₀₀		•			1	•	U	U													_		-								1		Medium
0																	1																Small
	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0 Distan	8.5 ice (m)	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0
DEFEC	ст	CURR	ENT	Mainline	ID: A - B	Pipe	D: A - B	Diameter	150 F	'lpe Type: 1	VCP S	oli Type S	andy Cla	y Losm	Ground	Condition	Dry						1										
1000		-			-	-				2	-	-		-							Slight	Differen	ce	1							D	isplay Tot	a Current:
ŧ																					Tota	al Current	E.							N	0		•
500-						U				U	U	L								1													Medium
							1																										
							1										1				14	2		_									Small
0	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6,5	7.0	7,5	8.0 Distan	8.5 ce (m)	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0
	DE	FECTS				u	NGTHS					LPS S	UMMA	RY																			
Large		1		1	1.06%					Serere	101	198																					
Medium	é.	3			1,6	2%			-	Millor	0.0	190				-																Ν	NTE
Small	-	7	_	1			3.09%			Total LP	8 0.	115						70	00	Λ	D												UIE
120000	-	8		Parente.		_	-			090		43400			75,094	-		13	,03	•						FL	anti	ro S	oor	0.00	mr	lat	ad a

LPS SUMMARY

Electro Scan completed a second survey, immediately following its first scan successfully demonstrating its repeatability.

DIFFERENCE

6,269 LPD

8.6%

Page 20 of 38

All Defects

DEFECT

2. ABBOTSFORD

The Abbotsford pilot area was add in response to a developing situation where a private resident had reported a sewer back-up into their basement, in an area know for frequent overflows.

Each sewer main surveyed was 225mm diameter pipes, consisting of 5 pipes, including four (4) VCP and one (1) CIPP, with FELL finding over 409 defect with a maximum leakage rate totaling 19.596 l/s.

Scans Dista	ice Pinhole	Small	Medium	Large	Total Defects	LPS	LPD
5 200	114	205	59	31	409	19.596	1,693,078

Date F	Mainline ID	8	Pipe ID	Pipe Type 🗄	Diameter								
13/12/2019	1285623 - 128593	•	3575745	VCP	225	30	0		36	12	3	2.937	253,744
	1283207 - 128593	•	3822108	VCP	225	68	0		80	23	6	6.088	526,021
	1285947 - 128321	5	3576181	CIPP	225	49		114	55	11	9	5.790	500,237
	1283211 - 128321	5	3576177	VCP	225	38	0		21	4	6	2.189	189,095
	1285939 - 128321	Ş.,	3578905	VCP	225	15	0		13	9	7	2.593	223,981

DEFECT CURRENT Narrine ID 1285947 - 1283215 Pipe ID: 3576181 Diameter: 225 Pipe Type: CIPP Soil Type: Sandy City Loam Ground Condition Dry

215	CCTV
140	Diar node, maintenance hale. Nodemane: 1203211
1.00	Water taxel, dear flow (the invent is visible), depth 5%
10	Joint Baptered lengthedrick, templectral disponenteril (7-30m)
1.45	Join deplecies rationally, some anglescomer, 15-35-66 , at 2 minute
1.00	Just Stations region, region depletered () . at (2 video)
10	Joint displaced angular, angular displacement $11^{\rm o}$, at 0 arboni
12.99	Auroteen rooms, good worksmanality, dissociate 1225mm , all 5 ciclosite
	Longitudinal finalcase, anjunt, width Seven , at 12 actions
1.11.00	Pier rock, a restrictly analination of tester move roots, reductor a cross sectional area, it parts Obstruction, <51, at 12 arcset
10.00	Inside a compact transmigneet aren, with Hox penetration, trans to 11 states
31.01	Jose displaced radials, radial displacement (0-30mm , gr 00 croock

Finan roos, maintenance fore, Nodenanie: 1282215 ; DRDP JONCTION IN PT

FELL

CCTV

Print regari, localised bring-loss from the complete majorities length, angle: 1000mm, texe 12 to 12 common Drange of control material New material, Lindonshier Material Print rock, matthewards from Nodecurve, 100108

ia TI

27.48

-

very

ctions

escaling

5

126.13

3. BALGOWLAH HEIGHTS

Despite a collapse found by CCTV in #1, difficult to access manhole entry was easily overcome to allow both CCTV and FELL inspections; however FELL automatically surveyed leaks at nearly every VCP pipe joint, fractures, and junctions.

With FELL and CCTV inspections beginning at a manhole located in a residential backyard patio, with a steep slope, the jet truck was positioned at the downstream manhole and successfully jetted up to the upstream manhole.

2

4. BIRCHGROVE

The Birchrove area was a challenge due to significant roots and debris that had to be removed, with some lines Cleaned and Televised three or more times. The area saw FELL's highest measured Liters per Second (LPS) defect flows for its two (2) Earthenware pipes (#4 & #5), with the remainder pipes CIPP.

FELL accurately located a major point repair in #4 and successfully surveyed #1 where CCTV was attempted the following day, resulting in an Abandoned Survey.

Each of CIPP had a high number of pinhole leaks, with CCTV not recording any active infiltration.

Sc	ans	D	istance	Pinhole	Small	N	ledium	Large	Total Defe	cts	LPS	LPD
	8		479	160	19		21	183	383		53.856	4,653,183
Date F	Mainline I	DI	Pipe ID	Pipe Type 🛚	Diameter							
10/12/2019	1292481 -	1290317	3595216	EW	150	77	0	3	10	1	15 34.16	2,952,202
	1289745 -	1292481	10626500	EW	150	52	0	3	10	66	16.836	1,454,597
	1291189 -	1288457	3591661	CIPP	225	64	11	7	0	1	1.451	125,318
	1288041 -	1290769	3591084	CIPP	225	64	40	3	1	1	1.103	95,338
	1290325 -	1290341	3593196	CIPP	200	57	65	0	0	0	0.102	8,831
	1299041 -	12911889	3593816	CIPP	225	47	9	1	0	0	0.080	6,923
	1290341 -	1290321	3590472	CIPP	200	55	27	0	0	0	0.068	5,833
09/12/2019	1290321 -	1288037	3590464	CIPP	225	63	8	2	0	0	0.048	4,143
						Distance (m)	Pinhole	Small	Medium	Large	LPS =	LPD

Page 27 of 38

Page 28 of 38

5. CHATSWOOD

The Chatswood area was known for previously high bacteria readings in an open stormwater canal, with difficulty locating the sources despite multiple visual inspections.

As a result, Electro Scan was assigned to investigate six (6) pipes totaling 346m (1,135ft), ranging from 150mm (6 inches) to 400mm (16 inches) in diameter, running in close proximity to a stormwater open canal, with television inspection separately attempted to compare and contrast results.

In addition to surveying its two longest sewer mains (i.e. 97m and 85m), Electro Scan survey its only Spiral Wrap Liner with a Rib-Loc system (#1) and a deteriorated sectional CIPP as part of a VCP (#3). While there were a number of CCTV observations, few if any material sources of infiltration were visually located.

Scans	Distance	Pinhole	Small	Medium	Large	Total Defects	LPS	LPD
6	346	37	187	116	102	442	27.574	2,382,410

Date F	Mainline ID	2	Pipe ID	Pipe Type 🗄	Diameter							
12/12/2019	1293066 - 129337	0	3599630	VCP	300	97	0	37	62	59	11.932	1,030,946
10/12/2019	1296350 - 129363	10	3597698	VCP	300	85	0	95	41	2	5.035	435,098
	1296362 - 129363	80	3597702	VCP	150	29	0	6	10	34	7.544	651,775
09/12/2019	1293634 - 129638	54	4300122	VCP	400	31	0	14	2	6	1.996	172,469
	129638 - 1296638	8	4300426	VCP	400	74	0	35	1	1	0.967	83,564
	1296354 - 129363	80	3597706	SRP	400	30	37	0	0	0	0.099	8,558
						Distance (m)	Pinhole	Small	Medium	Large	LPS	LPD

Q IAP_SystneyWater - ArcNap ø 100000044000000+++++0+0+02465000 4 ある 市内なみ おい EM- 8 44 3 InfoAust WMS - 📰 🛱 le Of Contents 0 E @ • 🖪 🗉 6.01 60.0 - TOTO,9 🔶 🔶 0.0501 - 0.07 🔶 0.0701 - 0.15 0.1501 - 0.23 Connections GPM ing ------10 PT 5 terr Value E Control Valve E Natwork Structur E Discharge Point E Z Treatment Plant Catch Sasin < Page 31 of 38

6. SPRING FARM

Representing Electro Scan's first known survey of unplasticised polyvinylchloride (uPVC) pipe, two new installations were assessed that were some of the deepest manholes inspecting, requiring confined-space safety measures, despite no manhole entry was required.

It should be noted that FELL technology measures the variation of electric current across surfaces, which is why smaller defects in surface materials like cement and vitrified clay pipe are not recorded, but why they are included in plastics, including PVC, High Density Polyethylene (HDPE), PE, PP, and SRP pipes.

While Spring Farm's uPVC had near perfect readings, several small spikes suggests that slight water leaks may occur at locations designated by FELL reporting. We also understand that there is a material change within 1m of the manhole, and that pipes has not yet passed vacuum testing.

Page 32 of 38

Corkscrew device to retrieve jet hose without person entry.

DEFECTS	LENGTHS		LPS SUMMARY	DIAMET	ER & DISTANCE	OPERA	TOR INFO
irge 0	0.00%	Severe	0.000		005	Electro S	Scan Australia
scium 6	0.00%	Moderate	0.000		225		Project
-1 2	A 230	Total LPS	0.141			FE	Job
ali 4	0.33%	LPD	12,156		(68	Spr	ing Farm
hole 13	0.61%	Severe %	0.000%		N 02 0100 0000 000	Atmospheric Test	Scan Start
Defects 15	0.94	Minor %	100.000%	0 10 20 3	50 40 50 60 70 Distance (m)	11/12/2019 8:09:42 AM	11/12/2019 9:03:08 AM
0 2 4	Mill In Initial State Initial State<	24 26 ; I-MH10 Diameter:	28 30 32 34 36 38 44 Distance (m) 225 Ptor Type FKC Biol Type Sandy Clay Leas	9 42 44 46 4	18 50 52 54 56	58 60 62 G	5r 4 66 58 70
	6 8 10 12 14 16 18 20 22	24 26	28 30 32 34 36 38 4	0 42 44 45	48 50 52 54 56	58 80 52 5	4 95 68 70
200 100 0 2 4	6 8 10 12 14 16 18 20 22 Defects Lengt	24 26	28 30 32 34 36 38 4 Distance (m) LPS	0 42 44 46 4	48 50 52 54 56 % of LPS	58 60 62 6	4 96 68 70
200 100 0 2 4 otal:	6 8 10 12 14 16 18 20 22 Defects Lengt 15	24 26 t h (mm) 548	28 30 32 34 36 38 4 Distance (m) LPS 0.14	0 42 44 46 .	48 50 52 54 56 % of LPS 100.45%	58. 60 52 54	4 66 68 70 LPD 12,210
200 100 0 2 4 stal: EFECT BY LO	6 8 10 12 14 16 18 20 22 Defects Lengt 15	24 26 th (mm) 548	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay	0 42 44 45	48 50 52 54 96 % of LPS 100.45%	58. 60 52 5	4 96 68 70 LPD 12,210
and the second s	6 8 10 12 14 16 18 20 22 Defects Lengt 15 6 CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH Defect Start Defect Start Defect Transmitter 033 775	24 25 th (mm) 648 110 Diameter: 22	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Length (mm) 122	0 42 44 45 Leam Ground Condition: I LPS 0.01	48 50 52 54 56 % of LPS 100.45% Dry % of LPS	58 60 62 64	LPD 1 254
and the second s	6 8 10 12 14 16 18 20 22 Defects Lengt 15 C C CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH Defect Enc 633 755 1 106 1 342	24 25 th (mm) 548 110 Diameter: 22	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236	0 42 44 45 Learn Ground Condition: I LPS 0.01 0.05	48 50 52 54 56 % of LPS 100.45% Dry % of LPS 10.31% 36.77%	58. 60 52 5	LPD 12,254 4 4 70
al:	6 8 10 12 14 16 18 20 22 Defects Length 15 Length CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH Defect Start Defect Enc 633 755 1,106 1,342 19,787 19,787	24 26 24 (mm) 548 110 Diameter: 22	28 30 32 34 36 38 4 Dtstarme (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236 0	0 42 44 45 Leam Ground Condition: I LPS 0.01 0.05 0.00	48 50 52 54 96. % of LPS 100.45% Pry % of LPS 10.31% 36.77% 0.45%	58. 60 62 6	4 98 98 70 LPD 12,210 LPD 1,254 4,470 55
al:	6 8 10 12 14 16 18 20 22 Defects Length 15	24 28 th (mm) 548 110 Diameter: 22	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Length (mm) 122 236 0 0	0 42 44 45 Leam Ground Condition: I LPS 0.01 0.05 0.00 0.00	48 50 52 54 56 % of LPS 100.45% Dry % of LPS 10.31% 36.77% 0.45% 0.45%	58 60 52 64	LPD 12,210 L254 4,470 55 55
al:	6 8 10 12 14 16 18 20 22 Defects Lengt 15 E	24 28 th (mm) 548 110 Diameter: 22	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236 0 0 0	0 42 44 45 Leam Ground Condition: I LPS 0.01 0.05 0.00 0.00 0.00 0.00	48 50 52 54 56 % of LPS 100.45% Pry % of LPS 10.31% 36.77% 0.45% 0.45% 0.45%	58 60 52 54	LPD 12,210
al:	6 8 10 12 14 16 18 20 22 Defects Length 15 Length 15 Length CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH Defect Start Defect Enc 633 755 1,106 1,342 19,787 19,787 48,182 48,182 50,082 50,082 50,288 50,288	24 26 24 (mm) 548 110 Diameter: 22	28 30 32 34 36 38 4 Dtsance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236 0 0 0 0 0 0	0 42 44 45 Leam Ground Condition: 1 LPS 0.01 0.05 0.00 0.00 0.00 0.00 0.00	48 50 52 54 96 % of LPS 100.45% Pry % of LPS 10.31% 36.77% 0.45% 0.45% 0.45% 0.45% 0.45%	58. 60 62 6	4 98 98 70 LPD 12,210 LPD 1,254 4,470 55 55 55 55 55
al:	5 8 10 12 14 16 18 20 22 Defects Lengt 15 CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH10 Defect Start Defect Enc 633 755 1,106 1,342 19,787 19,787 19,787 19,787 19,787 19,787 50,082 50,082 50,288 50,288 50,380 50,380 50,380	24 25 34 (mm) 548 10 Diameter: 22	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Length (mm) 122 236 0 0 0 0 0 0 0 0	Loam Ground Condition: I Loam Ground Condition: I L2S 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00	48 50 52 54 96 % of LPS 100.45% Dry % of LPS 10.31% 36.77% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45%	58 60 52 64	LPD 12,210 L254 4,470 55 55 55 55 55
al:	6 8 10 12 14 16 18 20 22 Defects Lengt 15 Lengt CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH Defect Start Defect Enc 633 755 1,106 1,342 19,787 19,787 48,182 48,182 50,082 50,082 50,288 50,288 50,380 50,380 50,418 50,426	24 26 sh (mm) 548 110 Diameter: 22	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236 0 0 0 0 0 0 0 0 0 0 0 0 0	0 42 44 45 Leam Ground Condition: 1 LPS 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00	48 50 52 54 56 % of LPS 100.45% Dry % of LPS 10.31% 36.77% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45%	58 60 62 64	LPD 12,210 LPD 1,254 4,470 55 55 55 55 55 109
al:	6 8 10 12 14 16 18 20 22 Defects Length 15 Length 15 Length CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH Defect Start Defect Enc 633 755 1,106 1,342 19,787 19,787 48,182 48,182 50,082 50,082 50,288 50,288 50,288 50,380 50,418 50,495	24 26 th (mm) 548 110 Diameter: 22	28 30 32 34 36 38 4 Dtstarme (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236 0 0 0 0 0 0 0 8 8	0 42 44 45 Leam Ground Condition: 1 LPS 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	48 50 52 54 96 % of LPS 100.45% Pry % of LPS 10.31% 36.77% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.90% 0.90%	58. 60 52 6	LPD 12,210 1,254 4,470 55 55 55 55 55 55 109 109
al:	5 8 10 12 14 16 18 20 22 Defects Length 15 CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH10 Defect Start Defect Enc 633 755 1,106 1,342 19,787 19,787 19,787 19,787 19,787 50,082 50,082 50,088 50,288 50,288 50,380 50,380 50,380 50,418 50,495 50,497 66,298 66,374 50,495	24 25 34 (mm) 548 10 Diameter: 22	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236 0 0 0 0 0 0 0 8 8 8 76	Loam Ground Condition: I Loam Ground Condition: I L2S 0.01 0.05 0.00 0.0	48 50 52 54 96 % of LPS 100.45% Dry % of LPS 10.31% 36,77% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.90% 13.45%	58 60 52 64	LPD 12,210 12,254 4,470 55 55 55 55 55 55 109 109 109 109
al:	6 8 10 12 14 16 18 20 22 Defects Lengt 15 Lengt 15 C CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH Defect Start Defect Enc 633 755 1,106 1,342 19,787 19,787 48,182 48,182 50,082 50,082 50,288 50,288 50,380 50,380 50,418 50,426 50,418 50,426 50,427 50,426 50,428 50,426 50,418 50,426 50,427 50,425 66,298 66,295 66,295 66,295	24 26 ih (mm) 548 110 Diameter: 22 4	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Length (mm) 122 236 0 0 0 0 0 0 0 0 0 0 0 0 0	0 42 44 45 Loam Ground Condition: I PS 0.01 0.05 0.00	48 50 52 54 56 % of LPS 100.45% Dry % of LPS 100.45% 10.31% 36.77% 0.45% 0.45% 0.45% 0.45% 0.45% 0.90% 13.45% 0.45%	58 60 62 64	LPD 12,210 LPD 12,210 LPD 12,254 4,470 55 55 55 55 55 55 55 55 55 5
200 0 0 0 0 0 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1	6 8 10 12 14 16 18 20 22 Defects Length 15 Length 15 Length CATION Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH Defect Start Defect Enc 633 755 1,106 1,342 19,787 19,787 48,182 48,182 50,082 50,088 50,288 50,380 50,418 50,426 50,487 50,495 66,298 66,374 66,725 66,840	24 26 th (mm) 548 110 Diameter: 22	28 30 32 34 36 38 4 Dtstarme (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236 0 0 0 0 0 0 0 0 0 0 0 0 0	0 42 44 45 Leam Ground Condition: I P S 0.01 0.00	48 50 52 54 96 % of LPS 100.45% Pry % of LPS 10.31% 36.77% 0.45% 0.45% 0.45% 0.45% 0.45% 0.90% 0.90% 13.45% 0.45% 0.45%	58. 60 52 6	4 68 68 70 LPD 12,210 1,254 4,470 55 55 55 55 55 109 109 1,635 55 55 55
200 0 2 4 tal: EFECT BY LO Cet Grado	5 8 10 12 14 16 18 20 22 Defects Length 15 Cartion Mainline ID: MH11 - MH10 Pipe ID: MH11 - MH10 <td< td=""><td>24 25 th (mm) 548 10 Diameter: 22</td><td>28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236 0 0 0 0 0 0 0 0 0 8 8 8 76 0 0 23</td><td>Loam Ground Condition: I Loam Ground Condition: I L23 0.01 0.05 0.00 0.0</td><td>48 50 52 54 96 % of LPS 100.45% Dry % of LPS 10.31% 36,77% 0.45% 0.45% 0.45% 0.45% 0.45% 0.90% 13.45% 0.45% 0.45% 0.90% 13.45% 0.45% 0.45%</td><td>58 60 52 64</td><td>LPD 12,210 LPD 12,210 LPD 1,254 4,470 55 55 55 55 109 109 109 1,635 55 55 164</td></td<>	24 25 th (mm) 548 10 Diameter: 22	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (mm) 122 236 0 0 0 0 0 0 0 0 0 8 8 8 76 0 0 23	Loam Ground Condition: I Loam Ground Condition: I L23 0.01 0.05 0.00 0.0	48 50 52 54 96 % of LPS 100.45% Dry % of LPS 10.31% 36,77% 0.45% 0.45% 0.45% 0.45% 0.45% 0.90% 13.45% 0.45% 0.45% 0.90% 13.45% 0.45% 0.45%	58 60 52 64	LPD 12,210 LPD 12,210 LPD 1,254 4,470 55 55 55 55 109 109 109 1,635 55 55 164
200 100 0 2 4 estal: EFECT BY LO foct Grade	6 8 10 12 14 16 18 20 22 Defects Lengt 15	24 26 ih (mm) 548 110 Diameter: 22	28 30 32 34 36 38 4 Distance (m) LPS 0.14 5 Pipe Type: PVC Soil Type: Sandy Clay Longth (nm) 122 236 0 0 0 0 0 0 0 0 0	0 42 44 45 Leam Ground Condition: I PS 0.01 0.05 0.00	48 50 52 54 56 % of LPS 100.45% Pry % of LPS 10.31% 36.77% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.90% 13.45% 0.90% 13.45% 0.45% 0.90% 13.35% 0.45%	58 60 62 64	LPD 12,210 12,210 1,254 4,470 55 55 55 55 55 55 109 109 109 1,635 55 55 55 109 109 1,635 55 55 55 164 3,761

Page 33 of 38

INNOVYZE® InfoAsset Planner®

The Innovyze[®] suite of products is an established strategic IT solution used on a daily basis to help manage Sydney Water's complex underground and surface water network.

A key aspect of Innovyze's latest release of InfoAsset Planner® has been the seamless integration with strategically aligned applications, including Electro Scan's Critical Sewer® cloud application containing the most advance pipe diagnostic capability for assessing, prioritising, and certifying repairs, rehabilitation, and replacement of gravity and pres-

surised sewer and stormwater pipes, force mains, and customer laterals.

In addition to interfacing data through a certified Application

lnnovvze

certified Application Programmers Interface (API) exchanging data between Electro Scan & InfoAsset, InfoAsset has a solution suite of applications to streamline asset decision support, quantifying rehabilitation effectiveness, and modeling asset deterioration.

DECISION SUPPORT

Prioritizing and grouping pipes into comprehensive sewer rehabilitation and replacement projects is complex and challenging.

Often involving a multitude of variables and complex ongoing analyses, risk is often defined as:

= [(Likelihood of failure) x (Consequence of failure)]

Where the likelihood of failure (LoF) is the probability of an asset failure occurring, and consequence of failure (CoF) is defined as the relative impact on the level of service resulting from a specific asset failure.

	LOF - Low	LOF - M. Low	LOF - Medium	LOF - M. High	LOF - High
		A REAL PROPERTY AND INCOME.			
COF - High	Medium	Medium	High •	Envene	Extreme
:OF - M. Hig	Medium	Medium	Negligible		Econo
:OF - Mediur	Low	Medium	Medium High		High
XOF - M. Low	Negligible	Low	×	and to the second	Medium
COF - Low	Negligible	Negligible	Low	Medium	Medium
By Percentage	e OB	y Value			
Consequence			Likelihood	of Failure (LOF)	
Lower Bounda	rv(96):	30	Lower Bou	ndary(%):	30
		1			and the second sec
Mid-Lower Bou	indary(%):	40	Mid-Lower	Boundary(%):	40
Mid-Unper Bo	indary(%):	50	Mid-Upper	Boundary(%):	50
Upper Bounda	ry(%):	60	Upper Bou	ndary(%):	60
		S Constanting of the			
	COF - High COF - M. Hig COF - Mediur COF - M. Low COF - Low By Percentag Consequence Lower Bounda Mid-Lower Bounda Mid-Upper Bounda	LOF - Low COF - High Medium COF - M. Hig Medium COF - Mediur Low COF - Mediur Low COF - Low Negligible COF - Low Negligible COF - Low Negligible COF - Low Negligible COF - Low Negligible Mid-Lower Boundary(%): Mid-Upper Boundary(%):	LOF - Low LOF - M. Low COF - High Medium Medium COF - M. Hig Medium Medium COF - Medium Low Medium COF - Medium Low Medium COF - Low Negligible Low COF - Low Negligible Negligible © By Percentage OBy Value Consequence Lower Boundary(%b): 30 Mid-Lower Boundary(%b): 50 Upper Boundary(%b): 60	LOF - Low LOF - M. Low LOF - Medium COF - High Medium Medium High XOF - M. Hig Medium Medium Medium XOF - M. Low Negligible Low Medium XOF - Low Negligible Low Medium COF - Low Negligible Negligible Low © By Percentage O By Value Lower Bourdary(%b): 30 Lower Bourdary Mid-Lower Boundary(%b): 30 Mid-Lower Mid-Lower Mid-Upper Boundary(%b): 50 Mid-Upper Bourdary Upper Boundary(%b): 60 Upper Boundary	LOF - Low LOF - M. Low LOF - Medium LOF - M. High COF - High Medium Medium High Provide XOF - M. High Medium Medium High Provide XOF - M. High Medium Medium Medium High Provide XOF - M. High Medium Medium Medium High Provide XOF - M. Low Negligible Low X X Provide XOF - M. Low Negligible Low X X Provide Y COF - Low Negligible Negligible Low Medium Medium Medium Medium Medium Y<

Even with sophisticated LoF and CoF evaluations and the resulting risk scores for each sewer main, other key operation & maintenance and CAPEX factors, specific to the individual collection system asset, must be considered. These include such considerations as available hydraulic models reflecting recent Point Precipitation Estimates, hydrogeological conditions including seasonal variances (e.g., groundwater levels), and proximity to environmentally-sensitive areas, etc.

Limitations of desktop analysis, as driven by individual asset inventories, including key factors like age, pipe material, diameter, and pipe depth, does not appear to lend itself to ultimate rehabilitation decisions; yet, supplemented by unbiased and unequivocal field condition assessment data, like leak profile data produced by low voltage conductivity, may be a key solution to arriving at cost effective, sustainable, and resilient capital plans, that can be environmentally audited for effectiveness.

More importantly, the success or failure of previous rehabilitation selections must be evaluated based on measured reductions in infiltration – *before* and *after* rehabilitation – using back-testing from previous models and selection parameters to update future planning horizons for optimized results.

Finally, as machine-intelligent technologies improve, assessing assets throughout their useful life will delivery key deterioration data needed to amortise or depreciate physical assets to support more advanced accounting systems and asset Remaining Useful Life (RUL).

Remaining Userful Life

SUMMARY

In general, any new product, business process, or professional service that becomes a viable solution for the water industry, must satisfy five (5) key requirements, including:

1. Have ability to demonstrate consistently superior and unambiguous results as compared to current methodologies,

2. Prove its capability to operate on a cross-section of assets, either achieving minimum or better-than-current methodologies,

3. Represent an overwehlming value for money,

4. Have a reputable local representative or authorized service provider, and

5. Possess valid commercial/market/product/ technical references that can be corroborated third party, unimpeachable sources.

TRIAL ELECTRO SCAN TRIAL PROJECT

As stated earlier the goal & objective of Sydney Water's Trial Electro Scan Project was to test and document the practical application, field operation, and ease of reporting of Low Voltage Conductivity also known by the US EPA as Focused Electrode Leak Location (FELL) technology, utilising ASTM F2550-13 (2018), compared to traditional Closed-Circuit Television (CCTV) utilising WSA 05-2008 2.2 Conduit Inspection Reporting Čode of Australia standards, in a variety of "live" Sydney Water in-field conditions.

KEY QUESTION

Does FELL technology deliver repeatable leak location and severity measurements not provided by traditional CCTV visual inspection? Can FELL technology be used to more accurately locate infiltration and exfiltration? What are FELL's advantages & disadvantages to current operations? How should new (possible) quality standards be introduced during start-up & operation of Sydney Water's Regional Delivery Consortium (RDC)?

While the last question may be discussed in another venue, preliminary field results tend to answer to previous questions appeared to be answered in the affirmative, and in many cases answered in a rather convincing and unequivocal manner.

KEY FINDINGS

Evaluation of the Sydney Water Potts Hill's Test Pipe observed that FELL technology successfully detected both pre-arranged defects, similar to CCTV inspection; however, FELL technology. Additionally, identified and measured numerous other defects at material changes transitioning from clay pipe-to-plastic pipe, and defects at each joint.

In Chatswood, numerous sources of potential exfiltration were identified in close proximity to a local river bed, not seen by CCTV, including defects in a Spiral Wrap Pipe.

In Birchgrove, an area of persistent tidal and wet weather infiltration (despite significant rehabilitation), found severe defects in recently lined cast iron pipes. One pipe where CCTV was attempted, but abandoned due to a significant bulge in Cured-In-Place Pipe (CIPP) liner, was successfully scanned in a single set-up by. FELL.

Customer Complaint sewer overflow -related locations in Abbotsford and Balgowlah Heights found numerous defects not found by CCTV, including a CIPP lined pipe abandoned by. CCTV and successfully survey by FELL.

New Unplastised Plastic Pipe (uPVC) evaluated in Spring Farm, already undergoing vacuum air testing, confirmed one pipe with no significant defects and one pipe with a single significant defect for a new pipe.

This trial project may have a possible significant impact on the future way Sydney Water determines pipe condition, especially for water tightness.

ADVANTAGES OF LOW VOLTAGE-BASED FELL INSPECTION

- 1. Accurately quantify leaks in liters per second.
- 2. Automatically finds precise pipe location (1cm).
- 3. Unbiased, unambiguous, repeatable results.
- 4. Tested by American EPA, British WRc, German IKT, and Japanese JASCOMA.
- 5. Average 2-3x faster than CCTV.
- 6. No third-party data interpretation required.
- 7. Approved for gravity sewers & pressurized pipes.
- 8. Able to test rising mains (i.e. force mains).
- 9. Able to test siphons.
- 10. Able to test small (76mm) & large (2000mm) diameter pipes.
- 11. Bypass pumping not required.
- 12. Tests joints, including bell & spigot & open ended. 24. Integrates w/Innovyze® InfoAsset®.

- 13. Tests customer connections and junctions.
- 14. Creates baseline LPS Pipe Rating, Before Rehabilitation, for comparison After
- 15. Tests CIPP & Post-Rehab % Effectiveness
- 16. Referenced in EPA Consent Decrees
- 17. ASTM F2550, 3rd Ed. 2018
- 18. AWWA M77, 1st Ed. 2019
- 19. Data in cloud, 10min or less, worldwide
- 20. Add FELL to standard CCTV vans
- 21. CCTV Kits available for Aries, Cues, IBAK, iPEK, Rausch, and other CCTV devices.
- 22. Masterclass by WRc, developers of NASSCO codes.
- 23. Utilized by IKT in recent CIPP study.

REFERENCES

Addressing the Shortcomings of a Sampling Strategy in CIPP Quality Assurance Programs, Tony Araujo and Po-Szu (Bruce) Yao, P.Eng., Paragon Systems Testing, Concord, Ontario, CANADA, NASTT 2019 No-Dig, Chicago, IL, March 2019.

ASTM F1216-09 and F1216-16, Standard Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube.

ASTM F2550-06 and F2550-13 (2018), *Standard Practice for Locating Leaks in Sewer Pipes By Measuring the Variation of Electric Current Flow Through the Pipe Wall.*

Generational Thinking In Water Management, Water Online, By Kevin Westerling, @KevinOnWater, July 26, 2017.

Guide for Evaluating Capacity, Management, Operation, and Maintenance (CMOM) Programs at Sanitary Sewer Collection Systems, United States Environmental Protection Agency, Office of Enforcement and Compliance Assurance (2224A), EPA 305-B-05-002, www.epa.gov, January 2005.

IKT-Liner Report 2018, Dipl.-Ök. Roland W. Waniek, Dipl.-Ing. Dieter Homann, Barbara Grunewald, M.Sc. IKT - Institute for Underground Infrastructure GmbH, Exterbruch 1,45886 Gelsenkirchen, Germany,

Retrospective Evaluation of Cured-in-Place Pipe Technology for Municipal Gravity Sewer Rehabilitation, Allouche, E., L. Wang, R. Sterling, And A. Selvakumar. EPA/600/R-12/004|-January 2012.

Operation and Maintenance of Wastewater Collection Systems, Volume I, Seventh Edition, ISBN 978-1-59371-066-8.

The Need to Quantify Pre- and Post-Rehabilitation Effectiveness, Chuck Hansen, Managing Partner, Hansen Invesment Holdings, LLC, October 2014.

USEPA Sewer Electro Scan Field Demonstration Revisited, 2013, Terry Moy, Manager, Program Management and Engineering, Clayton County Water Authority, 1600 Battle Creek Road, Marrow, GA 30260, USA, Charles G. Wilmut, Vice President, Burgess and Niple, 11117 Shady Trail, Dallas, TX 75229, USA, and Robert J. Harris, President, Leak Busters Inc, 3157 Bentley Drive Rescue, CA 95672, USA.

Electro Scan's Chuck Hansen & Sydney Water's Jerry Sunarho.

Matt Campos, Holly Tonner, and Chuck Hansen.

ABOUT THE AUTHORS

Chuck Hansen, chuck.hansen@hansen.com

Mr. Hansen is currently Chairman and Chief Executive Officer of Electro Scan Inc. and Managing Director of Hansen Analytics LLC, Sacramento, California, USA, with nearly 40 years supplying advanced asset management solutions to over 2,000 sewer & water agencies worldwide. In 1995, Hansen was selected by the Association of Local Government Engineers of New Zealand (AL-GENZ) to supply a countrywide pipeline asset management system, and later developed the first Asset Management System to adhere to AAS27. Partnered with Melbourne-based MITS, Hansen employed over 70 employees in its Collins Street offices before selling his company to Infor Global in 2007. After selling Hansen Information Technologies Inc. in 2007 for US\$100 million (AUD150 million), Hansen has been a private equity investor involved in numerous start-ups and an investment advisor to a California-based venture capital firm.

Today, Hansen works with the world's leading utilities to re-engineer their decision support systems to take advantage of machine learning and machine-intelligent technologies to streamline and enhance decision making. A licensed instrument-rated pilot and baritone saxophonist who has played with numerous artists & bands, including Huey Lewis, Toby Keith, and Tower of Power, Mr. Hansen earned his B.Sc. from U.C. Berkeley (1978) and M.B.A. from UCLA (1982).

Michael Condran, P.E., michael.condran@electroscan.com

Mr. Condran serves as Electro Scan's Southeast Regional Vice President, and works closely with utilities in developing pipeline rehabilitation prioritization programs as well as post-rehabilitation certification activities. He has over 33 years of consulting engineering experience in all phases of water infrastructure planning, design, construction, commissioning, training, and operations. Prior to joining Electro Scan in 2018, Mr. Condran was a Vice President since 2005 with both HDR Engineering and GHD Engineering, directing and managing complex municipal wastewater/water development and rehabilitation projects in the United States and internationally. He is active as an Officer with the Florida Section AWWA, an active member of WEF/Florida Water Environment Association, and provides advocacy with municipal and elected leaders to promote wise water policy. He has delivered dozens of technical engineering presentations at national and state conferences, and has lectured to annual training sessions for the Florida Water & Pollution Control Operators Association. Mike received his Bachelor of Science from the University of Wisconsin, and Master of Science in Civil Engineering from Colorado State University. Mike is a licensed professional engineer in Florida, Colorado, and North Carolina. Condran lives and works in Tampa, FL.

Intrigued by continuous innovation in the water sector, Mr. Bourke joined Innovyze, a leading global provider of wet infrastructure business analytics software in 2007. Spending four years in a technical support-based role he assisted in implementation of asset management and model-based information systems. Developing his skillset, he later transitioned into a Solutions Development role which lead him to 2017 when he was appointed a leadership position as Vice President of Asia Pacific in Innovyze overseeing all Asia Pacific activity.

