electro scaninc.

Benchmark Demonstration: Comparison of WRc-based CCTV Inspections v. Electro Scanning

Topsham, England 8 November 2012

Presented in Cooperation with South West Water Pell Frischmann, and Electro Scan Inc.

Pell Frischmann*

Selected Attendees

A Special Thanks to Pell Frischmann Consulting Engineers for hosting Electro Scan's Inaugural Demonstration in the UK, Thursday 8 November in Topsham (near Exeter).

Topsham Demonstration 8 Nov 2012

Topsham Demonstration 8 Nov 2012

Challenge

Use Electro Scan , in accordance with ASTM F2550-06, to assess a UK sewer pipe that had been previously televised, in accordance with WRc UK CCTV standards, that found no evidence of infiltration or leaks.

Designation: F 2550 - 06

Standard Practice for Locating Leaks in Sewer Pipes Using Electro-Scan--the Variation of Electric Current Flow Through the Pipe Wall¹

This standard is issued under the fixed designation F 2550; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

INTRODUCTION

Infiltration of groundwater into a sewer through defects in the pipe can considerably increase the operation and capital costs of a sewer system. Exfiltration of sewage out of a sewer pipe may cause degradation of aquifers and shoreline waters. Accurate location, measurement, and characterization of all potential pipe leak defects are essential inputs for cost-effective design of pipe renewal or remediation. Commonly used sewer leak assessment methods either do not detect a significant number of large potential pipe leak defects, particularly those caused by faulty joints or service connections, or are too slow or costly or both for widespread application.^{2, 3}

http://www.astm.org/Standards/F2550.htm

Principle of Operation

- Electro-scanning is carried out by pulling the probe through the pipe at a speed of 10 m/minute (30 ft/minute) and measuring the variation of electric current flowing between the probe and the fixed electrode on the surface. When the probe is close to a pipe defect the electric current increases because the defect decreases the electrical resistance of the pipe wall. The probe is designed to measure only that electric current which flows through a circular test band around the pipe wall. The test band is about 30 mm (1 inch) wide and located at the middle of the probe.
- As the probe is pulled through the pipe the electric current flow and the position of the probe in the pipe are recorded and displayed in real time as a "current trace" on a notebook computer (Figure 5). When the middle of the probe is within 20 to 30 mm of a defect in the pipe wall the electric current through the pipe wall increases, attaining a maximum value when the center of the probe is radially aligned with the defect.

Run 1 Analysis

ANOMALY ANALYS	IS						Grade		Flow	Flow
Anomaly Picking	100.00	Grade Current	Number	Length	% Length of Pine Tested	% of Total Anomaly	Flow Levels	Number	lt/min	lt/sec
meshold		Levels			Tipe lested	Length	>15	1	40.7	0.6783
Grade	Large	>700	1	0.0	0%	1%	15 to 5	0	0.0	0.0
	Medium	700 to	6	0.7	3%	72%				
		400					<5	27	36.8	0.6133
	Small	<400	21	0.3	1%	27%	<1	28	77.5	1.2916
	Total		28	1.0	5%	100%				

Run 2 Analysis

ANOMALY ANALYSIS							Grade		Flow	Flow
Anomaly Picking	100.00	Grade Current	Number	Length	% Length of	% of Total Anomaly	Flow Levels	Number	lt/min	lt/sec
Threshold		Levels			ripe lested	Length	>15	1	23.0	0.3833
Grade	Large	>700	0	0.0	0%	0%	15 to 5	2	12.0	0.2000
	Medium	700 to	4	0.2	1%	13%				
		400					<5	25	32.6	0.5433
	Small	<400	24	1.0	5%	87%	<1	28	67.6	1.126
	Total		28	1.2	6%	100%				

Topsham Defect Analysis

Run 1 Anomaly analysis

ANOMALY ANALYS	IS						Grade		Flow	Flow
Anomaly Picking	100.00	Grade Current	Number	Length	% Length of	% of Total Anomaly	Flow Levels	Number	lt/min	lt/sec
mesholu		Levels			ripe lesteu	Length	>15	1	40.7	0.6783
Grade	Large	>700	1	0.0	0%	1%	15 to 5	0	0.0	0.0
	Medium	700 to	6	0.7	3%	72%				
		400					<5	27	36.8	0.6133
	Small	<400	21	0.3	1%	27%	<1	28	77.5	1.2916
	Total		28	1.0	5%	100%				

Run 2

ANOMALY ANALYS	IS						Grade			
Anomaly Picking Threshold	100.00	Grade Current	Number	Length	% Length of Pipe Tested	% of Total Anomaly	Flow	Number	Flow lt/min	Flow lt/sec
		Levels				Length	>15	1	23.0	0.3833
Grade	Large	>700	0	0.0	0%	0%	15 to 5	2	12.0	0 2000
	Medium	700 to	4	0.2	1%	13%	15 (0 5	-	12.0	0.2000
		400					<5	25	32.6	0.5433
	Small	<400	24	1.0	5%	87%	<1	28	67.6	1.126
	Total		28	1.2	6%	100%	11	20	07.0	1.120

Notes:

- A variance of defect quantification within the expected + or 20% range is shown as expected. This generally
 occurs as a result of changes in the nature of the contact between the pipe wall and ground in the trench. As
 more water is forced out through a defect, it pushes the earth away from the pipe, slightly reducing the
 amplitude of electrical leakage.
- Due to the grading of defects occurring at a definite point (ie. 700) some defects may be graded differently as this + or – 20% variance occurs.

Topsham Defect Analysis

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
-0.117	0.205	322	554	М
2.79	2.88	90	249	S
3.951	3.951	0	161	S
4.563	4.563	0	116	S
5.072	5.072	0	112	S
5.664	5.664	0	132	S
7.542	7.564	22	581	М
8.221	8.221	0	113	S
8.778	8.778	0	238	S
9.388	9.676	288	695	М
9.93	9.947	17	422	М
10.637	10.689	52	423	М
11.869	11.869	0	191	S
12.398	12.424	26	128	S
12.48	12.649	169	479	М
13.079	13.079	0	132	S
13.676	13.707	31	317	S
14.901	14.901	0	116	S
15.462	15.462	0	117	S
16.68	16.68	0	130	S
16.743	16.76	17	242	S
17.355	17.369	14	138	S
17.981	17.992	11	202	S
18.642	18.667	25	385	S
18.851	18.883	32	168	S
18.901	18.912	11	284	S
19.296	19.32	24	188	S
19.836	19.836	0	200	S

Notes:

- Defect location appears to be offset from CCTV measurements by as much as 0.13 m (towards end of pipe) due to differences in zeroing of data cable, and potential slack in CCTV data cable.
- Defects with length reading of '0' are considered radial pipe defects of < 10mm in size.
- Regular interval of defects indicated many leaking joints.

Electro Scan and CCTV Comparison

Electro Scan						
Size Grading of Defect	Number of Defects Identified					
Small	24					
Medium	4					
Large	0					
Total	28					

CCTV						
Nature of Defect	Number of Defects Identified	Grade				
Structural	1	1				
Service	3	4				

electroiscaning. Electro Scan and CCTV Comparison

Potential Defect Flow

CCTV Screenshot Comparisons

The following analysis shows a screenshot taken at the location of each defect identified with Electro Scan in this trial.

Notes:

 Visual comparisons will note distances slightly less than those recorded on Electro Scan report. This is due to the need to stop the camera short of defects in order to get a screenshot of them.

Defect Identified: Manhole Connection Defect

CCTV Call Out: None

No Photo Available on CCTV video. Inspection started at 0.4m

Notes: Most significant leak in pipe.

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
-0.117	0.205	322	554	М

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
2.79	2.88	90	249	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
3.951	3.951	0	161	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
4.563	4.563	0	116	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
5.072	5.072	0	112	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
5.664	5.664	0	132	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
7.542	7.564	22	581	М

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
8.221	8.221	0	113	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
8.778	8.778	0	238	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
9.388	9.676	288	695	М

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
9.93	9.947	17	422	М

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
10.637	10.689	52	423	М

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
11.869	11.869	0	191	S

Defect Identified: Small Longitudinal Defect

CCTV Call Out: None

Notes: Evidence of minor cracking @ 5 o'clock

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
12.398	12.424	26	128	S

CCTV Call Out: None

Notes: Evidence of minor cracking @ 5 o'clock continuing on from joint.

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
12.48	12.649	169	479	М

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
13.079	13.079	0	132	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
13.676	13.707	31	317	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
14.901	14.901	0	116	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
15.462	15.462	0	117	S

Defect Identified: Small Longitudinal Defect

CCTV Call Out: None

Notes: Evidence of minor cracking @ 9 o'clock.

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
16.68	16.68	0	130	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
16.743	16.76	17	242	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
17.355	17.369	14	138	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
17.981	17.992	11	202	S

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
18.642	18.667	25	385	S

Defect Identified: Small Longitudinal Defect

CCTV Call Out: None

Notes: Evidence of minor cracking @ 9 o'clock.

Defect Start (m)	Defect End (m)	Defect Length (mm)	Defect Max Current	Defect Severity
18.851	18.883	32	168	S
18.901	18.912	11	284	S

Defect Identified: Small Longitudinal Defect

CCTV Call Out: None

Notes: Evidence of minor cracking @ 9 o'clock.

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
19.296	19.32	24	188	S

CCTV Call Out: OJM – Open Joint Medium

Defect	Defect	Defect	Defect	
Start	End	Length	Max	Defect
(m)	(m)	(mm)	Current	Severity
19.836	19.836	0	200	S

Findings & Conclusions

CCTV, alone, is unable and inadequate to identify, locate, and quantify defects in sanitary sewers that potentially cause infiltration.

In addition to becoming a recommended prerehabilitation assessment tool, added benefit exists as a post-rehabilitation assessment tool to certify sewer repairs, relining, and replacements, as "leak free."

Andrew O'Keefe Director of Sales

electro scaninc. Email: andrew@electroscan.com Tel: +1 503 939 0403

Facebook LinkedIn YouTube Twitter

k www.facebook.com/**Electro-Scan**-Inc/214255938644317

www.linkedin.com/charlesahansen

www.youtube.com/SewerElectroScan

@electroscan